Your Ad Here

Wednesday, February 28, 2007

Googling Brain Proteins With 3-D Goggles


The Allen Brain Atlas, a genome-wide map of the mouse brain on the Internet, has been hailed as "Google of the brain." The atlas now has a companion of the brain's working molecules, a sort of pop-up book of the proteins, or proteome map, that those genes express.

The protein map is "the first to apply quantitative proteomics to imaging," says Richard Smith, Battelle fellow at the US Department of Energy's Pacific Northwest National Laboratory, who led the mapping effort with Desmond Smith of UCLA's David Geffen School of Medicine.
"Proteins are the lead actors, the most important part of the picture," PNNL's Smith says. "They are the molecules that do the work of the cells."

Fine-tuning such proteome maps will enable comparisons of healthy brains with others whose protein portraits look different. Contrasts in location and abundance of proteins may display the earliest detectable stages of Alzheimer's, Parkinson's and other neurological diseases. They hope such diseases might be curbed if caught and treated early enough.
The National Institutes of Health-funded study, performed at DOE's Environmental Molecular Sciences Laboratory on PNNL's campus, is published in the advance online edition of Genome Research and featured in current Nature online Neuroscience Gateway.

To produce the map, the team characterized center-brain slices as scores of 1 millimeter cubes, or "voxels," to "show us where proteins appear in the brain and where they vary in abundance," PNNL's Smith says. "We labeled all the proteins so we would have reference points so we know we're looking at the same protein between different parts of the brain and from one mouse to another."

Until now, proteomics, which enlists a specially modified instrument called a mass spectrometer for the task of identifying proteins and tallying them, has been akin to flying blind over a lake of proteins. The abundance and protein type could be discerned from a given sample, but "knowing their location and how the abundances change in different cases is important for understanding what they do," PNNL's Smith says.


Bookmark http://universeeverything.blogspot.com/ and drop back in sometime.

Labels: , , , , , , ,

1 Comments:

Blogger neubrain said...

With such large voxel sizes, you can't resolve anything with regard to protein distribution. Brainmaps.org is far superior in this regard.

4:25 PM  

Post a Comment

Subscribe to Post Comments [Atom]

<< Home