Iowa State Researchers Develop Technology for Early Detection of Viruses
Iowa State University researchers have developed a technology that detects a single molecule of the virus associated with cervical cancer in women.
That's a significant improvement over the current test for the human papillomavirus, said Edward Yeung, an Iowa State distinguished professor and the Robert Allen Wright Chair in Chemistry who led the research team that developed the new test. The current test, the Nobel Prize-winning polymerase chain reaction technique, requires 10 to 50 virus molecules for detection.
"We are always interested in detecting smaller and smaller amounts of material at lower and lower concentrations," Yeung says. "Detecting lower levels means earlier diagnosis."
The discovery by Yeung, who's also a senior chemist and deputy program director for the U.S. Department of Energy's Ames Laboratory at Iowa State; Jiangwei Li, an Iowa State doctoral student; and Ji-Young Lee, a former Iowa State doctoral student; will be published in the Nov. 1 issue of the journal Analytical Chemistry.
Their work was funded by a five-year, $950,000 grant from the National Institutes of Health with additional support from The Robert Allen Wright Endowment for Excellence at Iowa State.
The project advanced just as human papillomavirus made national headlines. In June of 2006, the U.S. Food and Drug Administration approved a vaccine developed to prevent cervical cancer, precancerous lesions and genital warts caused by four types of the virus. The vaccine has been approved for females ages 9 to 26.
The Centers for Disease Control and Prevention reports the human papillomavirus is the most common sexually transmitted infection in the U.S. The agency estimates about 6.2 million Americans are infected every year and over half of all sexually active Americans are infected at some time in their lives.
Yeung says single molecule detection of the virus could help women and families decide to get vaccinated. He said vaccines administered after such early detection could still have time to stop the virus.
The new detection technology improves current technology by eliminating a step to amplify DNA samples for testing. Although the current test is efficient and well understood, the amplification can cause small contaminants to create test errors.
Yeung's single molecule spectroscopy technique involves creating chemical reagents that recognize and fluorescently tag the genetic sequence of the human papillomavirus. Test samples pass through a laser beam that lights the tags. Cameras capture the images for computer analysis.
The research team tested the technique using samples from normal Pap smears. They also spiked some of those samples with the virus to make sure the tests picked up known amounts of the virus.
Although this test concentrated on detecting the human papillomavirus, Yeung said it should detect HIV, avian flu and other viruses as well.
Watch more breaking news now on our video feed:
Bookmark http://universeeverything.blogspot.com/ and drop back in sometime.
That's a significant improvement over the current test for the human papillomavirus, said Edward Yeung, an Iowa State distinguished professor and the Robert Allen Wright Chair in Chemistry who led the research team that developed the new test. The current test, the Nobel Prize-winning polymerase chain reaction technique, requires 10 to 50 virus molecules for detection.
"We are always interested in detecting smaller and smaller amounts of material at lower and lower concentrations," Yeung says. "Detecting lower levels means earlier diagnosis."
The discovery by Yeung, who's also a senior chemist and deputy program director for the U.S. Department of Energy's Ames Laboratory at Iowa State; Jiangwei Li, an Iowa State doctoral student; and Ji-Young Lee, a former Iowa State doctoral student; will be published in the Nov. 1 issue of the journal Analytical Chemistry.
Their work was funded by a five-year, $950,000 grant from the National Institutes of Health with additional support from The Robert Allen Wright Endowment for Excellence at Iowa State.
The project advanced just as human papillomavirus made national headlines. In June of 2006, the U.S. Food and Drug Administration approved a vaccine developed to prevent cervical cancer, precancerous lesions and genital warts caused by four types of the virus. The vaccine has been approved for females ages 9 to 26.
The Centers for Disease Control and Prevention reports the human papillomavirus is the most common sexually transmitted infection in the U.S. The agency estimates about 6.2 million Americans are infected every year and over half of all sexually active Americans are infected at some time in their lives.
Yeung says single molecule detection of the virus could help women and families decide to get vaccinated. He said vaccines administered after such early detection could still have time to stop the virus.
The new detection technology improves current technology by eliminating a step to amplify DNA samples for testing. Although the current test is efficient and well understood, the amplification can cause small contaminants to create test errors.
Yeung's single molecule spectroscopy technique involves creating chemical reagents that recognize and fluorescently tag the genetic sequence of the human papillomavirus. Test samples pass through a laser beam that lights the tags. Cameras capture the images for computer analysis.
The research team tested the technique using samples from normal Pap smears. They also spiked some of those samples with the virus to make sure the tests picked up known amounts of the virus.
Although this test concentrated on detecting the human papillomavirus, Yeung said it should detect HIV, avian flu and other viruses as well.
Watch more breaking news now on our video feed:
Bookmark http://universeeverything.blogspot.com/ and drop back in sometime.
Labels: Iowa State, papillomavirus, technology, viruses
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home