Study Says Eyes Evolved For X-Ray Vision
The advantage of using two eyes to see the world around us has long been associated solely with our capacity to see in 3-D. Now, a new study from a scientist at Rensselaer Polytechnic Institute has uncovered a truly eye-opening advantage to binocular vision: our ability to see through things.
Most animals — fish, insects, reptiles, birds, rabbits, and horses, for example — exist in non-cluttered environments like fields or plains, and they have eyes located on either side of their head. These sideways-facing eyes allow an animal to see in front of and behind itself, an ability also known as panoramic vision.
Humans and other large mammals — primates and large carnivores like tigers, for example — exist in cluttered environments like forests or jungles, and their eyes have evolved to point in the same direction. While animals with forward-facing eyes lose the ability to see what's behind them, they gain X-ray vision, according to Mark Changizi, assistant professor of cognitive science at Rensselaer, who says eyes facing the same direction have been selected for maximizing our ability to see in leafy environments like forests.
All animals have a binocular region — parts of the world that both eyes can see simultaneously — which allows for X-ray vision and grows as eyes become more forward facing.
Demonstrating this X-ray ability is fairly simple, the researcher says: hold a pen vertically and look at something far beyond it. If you first close one eye, and then the other, you'll see that in each case the pen blocks your view. If you open both eyes, however, you can see through the pen to the world behind it.
To demonstrate how eyes allow us to see through clutter, hold up all of your fingers in random directions, and note how much of the world you can see beyond them when only one eye is open compared to both. You miss out on a lot with only one eye open, but can see nearly everything behind the clutter with both.
"Our binocular region is a kind of 'spotlight' shining through the clutter, allowing us to visually sweep out a cluttered region to recognize the objects beyond it," says Changizi, who is principal investigator on the project. "As long as the separation between our eyes is wider than the width of the objects causing clutter — as is the case with our fingers, or would be the case with the leaves in the forest — then we can tend to see through it."
To identify which animals have this impressive power, Changizi studied 319 species across 17 mammalian orders and discovered that eye position depends on two variables: the clutter, or lack thereof in an animal's environment, and the animal's body size relative to the objects creating the clutter.
Changizi discovered that animals in non-cluttered environments — which he described as either "non-leafy surroundings, or surroundings where the cluttering objects are bigger in size than the separation between the animal's eyes" (think a tiny mouse trying to see through 6-inch wide leaves in the forest) — tended to have sideways-facing eyes.
Watch more breaking news now on our video feed:
Bookmark http://universeeverything.blogspot.com/ and drop back in sometime.
Most animals — fish, insects, reptiles, birds, rabbits, and horses, for example — exist in non-cluttered environments like fields or plains, and they have eyes located on either side of their head. These sideways-facing eyes allow an animal to see in front of and behind itself, an ability also known as panoramic vision.
Humans and other large mammals — primates and large carnivores like tigers, for example — exist in cluttered environments like forests or jungles, and their eyes have evolved to point in the same direction. While animals with forward-facing eyes lose the ability to see what's behind them, they gain X-ray vision, according to Mark Changizi, assistant professor of cognitive science at Rensselaer, who says eyes facing the same direction have been selected for maximizing our ability to see in leafy environments like forests.
All animals have a binocular region — parts of the world that both eyes can see simultaneously — which allows for X-ray vision and grows as eyes become more forward facing.
Demonstrating this X-ray ability is fairly simple, the researcher says: hold a pen vertically and look at something far beyond it. If you first close one eye, and then the other, you'll see that in each case the pen blocks your view. If you open both eyes, however, you can see through the pen to the world behind it.
To demonstrate how eyes allow us to see through clutter, hold up all of your fingers in random directions, and note how much of the world you can see beyond them when only one eye is open compared to both. You miss out on a lot with only one eye open, but can see nearly everything behind the clutter with both.
"Our binocular region is a kind of 'spotlight' shining through the clutter, allowing us to visually sweep out a cluttered region to recognize the objects beyond it," says Changizi, who is principal investigator on the project. "As long as the separation between our eyes is wider than the width of the objects causing clutter — as is the case with our fingers, or would be the case with the leaves in the forest — then we can tend to see through it."
To identify which animals have this impressive power, Changizi studied 319 species across 17 mammalian orders and discovered that eye position depends on two variables: the clutter, or lack thereof in an animal's environment, and the animal's body size relative to the objects creating the clutter.
Changizi discovered that animals in non-cluttered environments — which he described as either "non-leafy surroundings, or surroundings where the cluttering objects are bigger in size than the separation between the animal's eyes" (think a tiny mouse trying to see through 6-inch wide leaves in the forest) — tended to have sideways-facing eyes.
Watch more breaking news now on our video feed:
Bookmark http://universeeverything.blogspot.com/ and drop back in sometime.
1 Comments:
Added to the new blog carnival, Carnival of Evolution #1
Post a Comment
Subscribe to Post Comments [Atom]
<< Home